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1.0 Introduction

Suppose we wish to estimate P(X ¢« ¢) where X is a continuous random
variable and c is some constant. That is we wish to estimate F(c¢) where F
is the cdf underlying X. Since F is unknown, a model cdf F(x;8) is selected,
and the vector of parameters 8 = (91,92,...,9p) may be estimated from a random
sample. In this situation some care should be taken with respect to the
method of estimation of 8. Since we do not know the form of F and we have
only postulated the form is G(x;6), we should use a method of estimation of @
which is robust. That is, the method by which 8 is estimated should result
in a value of G(x;@) which is as close as possible to F(x) even when G(x;8)
is different from F(x).

Also, as any applied statistician knows, data samples often contain
some contamination or outliers which are sometimes difficult to detect. The
estimation technique used should be robust in the senﬂé that 1t siaoud not be

too sensitive to the contamination.

2.0 Methodology

Samples of size N were generated from various underlying distributions in
the following manner. First, k random samples of size N were generated from
. ; th , .. . ; .th .
the unit interval with yij being the i individual in the j sample.  Using

-1
x,. =F °( : i
ij yij)’ k random samples xlj’ xzj,...x . from F(x) were obtained.

Nj
We considered four different families of cases as follows:
(1) F(x) is a c¢df such as logistic, Weibull, Laplace, etc.
(i1) F(x) is a mixture of two different normal cdf's
(111) F(x) {s a normal cdf with contamination

(fv) F(x) 1s a Weibull distribution with contamination and without

contaminatfon,




We used the normal model for G(x;8) in (i), (ii), (1ii), and in case (iv)
a Weibull model for G(x;0) was used. 1In all of the above cases we estimated
the parameters in the model cdf using the maximum likelihood method and a
least squares technique.

The least squares estimates were obtained by regressing the model cdf
G(x;8) on the empirical cdf which in our case requires non-linear regression.

The empirical cdfl may be defined as below

A 2i-1 .
FN(x) ST for X4y < x X(141)

=0 for x < x(l) ,

where x(i) is the ith order statistic. Now, the vector of parameters 8 is
estimated by selecting those values such that

N , 2
is minimized.
Since the above minimization does not usually yield a linear system of normal
equations, the parameters must be estimated using non-linear techniques. Ve
used the linearization or Taylor series method which is described in Draper
and Smith (1966). There are a number of other possibly more efficient methods.
However the linearization method gave us good results with respect to computer

time, and it was easily programmed in SAS MATRIX. Most all non-linear techniques

L Often i/N is used in place of (2i-1)/N in the definition of ?N(x). A more

general form is (i-c)/(n-2c+1), where the value of ¢ depends on the distrib-
ution. The values of 0 and 3/8 are then used for the uniform and normal
distributions, respectively. For further details see Hahn and Shapiro (1967).




require initial values to estimate the parameters. One method used when

~.
8 = (9,,8,) was as follows: VN
1’72 / Ced,
th / »47\"\. T Y.
(i) Let x(i) be the i order statistic such that i/N is between /(f7{; e \)},‘,
LoD .
AT
.15 and .25, and let x(j) be the jth order statistic such tha \“q°t{zj .
e > -I 4
& “ur
j/N is between .75 and .85. That is, select two order Djk\ * 0,
St ~ ~ /
Sta
statistics, one in the lower and one in the upper tail. /‘\<ﬂhnj (bUg; ~_
Oy :'7‘51,1""’/ >~ N
. . = i/? se 4, i, -
(1i) let G(x(i)’gl’GZ) i/N and ““La.~95; S~
T my oy Py
. = 3 / . f.", y 7 0s :
G(x(j),Ql,Sz) i/N // /, & y
and solve the system for 91 and 92 . A . //
This works in some cases such as the case when G(x;8) is the Weibull T // :

distribution. i

The maximum likelihood estimate of 8 is the value of 6 which maximizes the
likelihood function L. Tf the probability density function for the distribution
is given by g(x,8), and XysXys o s Xy are N values chosen randomly from the

distribution, then L is given by

L = g(xl,Q)g(xz,G)...g(xN,O)
The maximum likelihood estimate of @ is usually obtained by differentiating
L with respect to 8, setting the resulting derivative equal to zero and solving
for the value of 8. For most distributions, the solution is not straight forward i

and is best obtained by the use of an iterative technique. ‘

3.0 Comparison of Maximum Likelihood and Least Squares

Local and global errors were calculated as a means to compare the two

estimation techniques with respect to the underlying cdf. Let Cp be the




o e = ettt i

value such that F(Cp) = P. The local error for a specified value of P jor

the jth sample is given by

N
dpj = G(Cp;gj) - 7.
We define errors El (local), E2 and E3 (global) as follows:
k
E (p) = ¥ idpjl/k (The average local error at P over k samples)
j=1
k
E = Max|d .|)/k
2 Zl *3 | le)
J
k
Ey = X ) ld .| /Lk
j=1 all p PJ

where L is the number of values of p used.

For E2 and E3 the max and sum were taken over the grid {.01, .05, .1, .2,

.3, .4, .5, .6, .7, .8, .9, .95, .99}, and L, the cardinality of this set is
13. 1In all of the results reported in this paper k = 75. That is, the results
are based on 75 random samples of size M. N = 25 in all of the reported
results. liowever, we did use samplesof size 10 and 75, and observed the same

general pattern as that for samples of size 25.

3.1 Normal Mudel! Used on Various Distributions

Table 3.1 compares the method of maximum likelihood and least squares when
the data is sampled (generated) from each of several different distributions
and the model used is the normal distribution. When the sample comes from the
normal, Laplace, rectangular, symmetric triangular and the Cauchy distributions,

the results are independent of the values of the parameters of the distributicn.




This is not the case for the Weibull and gamma. The forms we used are given by

—axu
1 -¢

(Weibull)

F(x:a,B)

am/remy X tn.l e-)‘t dt (gamma).
0

F(x;'xy)\)

It is to be expected that for a normal distribution and a normal model,
the MLE would be superior. However the difference is small. For the logistic
distribution the two methods differ little. For the rectangular and triangular
distributions, the MLE is superior, while for the Laplace and the Cauchy, the
LSE is superior. The superiority of the LSE is substantial in the case of the
Cauchy distribution.

The Weibull is well approximated by the normal when 3 is between 2 and 6,
as is the gamma distribution for large values of n (the skewness and kurtosis
of the gamma distribution are given by 2/¥n and 3 + 6/n respectively). Because
of this it is not surprising that the MLE out-performs the LSE for the Weibull
(1,4) and gamma (9,2) and the LSE is superior for Weibull (1,1), gamma (3,3)
and gamma (2,1).

The difference between the two methods when the Cauchy distribution is the
true underlying distribution is illustrated in Figure 3.1. Figure 3.1 shows
the true cdf, (the Cauchy distribution), the empirical cdf, and the two normal
model cdf's using the MLE and LSE for u and o for a typical sample. This graph
shows the normal/LSE model giving a much closer approximation to the Cauchy

than the normal/MLE model.

3.2 Normal Model Used on the Mixture of Two Normals

Table 3.2 gives the results for the MLE and LSE when the data is from a

mixture of two different normal distributions. We use (l1-v) and v to denote




the respective weights of N(0,1) and N(a,b) distributions.

When the means and variances of the two normal distributions differ but
little (that is when a is not far from zerc and b is not far from '), there
is little difference between MLE and LSE. The LSFE offers substantial
improvement when the two mixing normals differ more. Figure 3.2 illustrates
this with the graph of the mixture of two normals (.8 N(0,1) and .2 N(3,9)),

the empirical cdf, the normal/MLE, and the normal/LSE.

3.3 Normal Model Used on a Normal Distribution with Contamination

In this case the true underlying distribution is normal. tliowever, some
of the data has been contaminated or altered in some way. This frequently
happens in actual case studies, and sometimes it is difficult to recognize the
altered information. This is different from the previous case in that the
true underlying distribution discussed in Section 3.2 is an actual mixing of
two distinct normals, and in this case the true underlying distribution is a
single normal distribution.

Table 3.3 gives the results for the two methods. The underlying distribution
is N(0,1) with a proportion v of the data altered. The altered observations
were assumed to be N{(a,b). In practice the contamination may take other forms,
but the given alteration serves to illustrate the effects of contamination on
the estimation methods. It seems clear that the method of least squares gives
much better results than maximum likelihood even when only modest contamination
is present.

Figure 5.3 illustrates the difference between the twe methods when a

N(p,1) distribution is contaminated (4%) wizh a MN(0,9).
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It shouald be noted that the LS model appears to he very statle under

contamination while the ML model seems quite sernsitive to contamination.

3.4 Weibull Model Used on Weibull Data With and Without Contamination

The samples were generated from a Weibull (2,6) population with a
proportion v of the data being "contaminated.' The contamination was eifected
by the transformation Vb x + a. Table 3.4 compares the MLE and LSk for various
proportions of contamination and combinations of a and b. When v = 0, i.e.,

there is no contamination, the MLE is slightly superior. For the three cases

where there is contamination, the LSE shows a definite superiority.
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_umwr_,,_s S , e
1 (Local Errors)
- E, .y
F(x) .05 .5 .95 L
Normal ML .023 .070 .028 .0861 L0452
LS .027 .071 .031 .0926 L0479
Laplace ML .035 .074 .030 .129¢ L0574
LS .036 .071 .032 .1148 .0551
Rectangular ML .024 .076 .026 L1169 .0529
LS L041 .084 . 046 .1235- L0602
Triangular ML 024 .077 .021 .0900 L0465+
(Symmetric) LS .030 .081 .028 L1001 L0519
Logistic ML .029 .078 .030 L1024 L0511
LS .029 . 080 .028 .1031 .0510
Cauchy ML .139 .077 .166 .2896 .1330
LS .049 .077 . 048 .1279 . 0606
Weibull (1,4) ML .025 .063 .025 .0799 .0418 ,
LS .028 .070 .032 L0913 L0476
Weibull (L,1) ML .104 .126 .036 L1742 .0834
LS .094 .093 . 044 .1618 .0739
Gamma (9,2) ML .030 .071 .027 .0963 L0471
LS L0346 | .073 .031 .1011 .0497
Gamma (3,73) ML .047 | .087 .031 .1184 .0565-
LS .049 .078 .036 L1160 .0557
Gamma (2,1) ML . 064 .099 .033 L1337 .0638
LS .049 .084 .041 .1287 .0597 : *
4
TABLE 3.1 '

A Comparison of Maximum Likelihood and Least Squares
Using the Normal Model
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Using the Normal Model on Data from the Mixture of Two Normals

A Comparison Between Maximum Likelihood and Least Squares

E1 (Local Error)
> o ol
I }‘2 L,i

v a b .05 5 .95
.08 3 1 ML .033 . 067 .026 0946 L0458

LS .027 .073 .035 .0975 L0479
.20 3 1 ML .035 . 080 .023 .1048 L0459

LS .035 .062 . 034 L1011 . 0450
.52 3 1 ML .020 .058 .027 .0917 .01366

LS .041 .034 .051 .0871 L0414
.08 3 9 ML .050 .071 .042 L1217 .0601

LS .028 .074 .032 . 0980 .0489
.20 3 9 | ML .071 .085 .031 .1555 .0700

LS .032 . 067 . 047 .1103 .0495
.52 3 9 ML . 065 .110 . 046 L1441 L0657

LS .069 .072 .033 .1284 .0554
.52 0 9 Ml .055 .067 .057 L1132 . 0608

LS .031 .069 .037 .0956 . 0498
.52 0 1/9 | ML .028 .071 .033 .1260 .0536

LS .036 .072 .044 L1044 .0516

L
TABLE 3.2




A Comparison of Maximum Likelihood and Least Squares

Using the Mormal Model on Contaminated Normal Data

I B . .
}.‘I (l.ocal Errors) }
P i o !
j
v b .05 .9 .45 |
.03 i ML 025 NOLE: L0587 Lokt NIRYE f
LS .028 074 O MR I LAY }
|
20 1 ML .021 .129 17 L1709 L0950 ;
LS .025 e 100 L1962 L0861
i
{
.08 1 ML .031 .089 L0807 L1309 00y
LS .027 . 08N 056 L 093 L0592
i
|
-
20 1 ML .027 . 155 203 L2473 1292
LS . 028 .122 5 L1883 IRR
3 9 ML L0591 .082 107 L1485 L0800
LS L0130 075 007 L1002 L0549
.20 9 Ml 102 064 . 1o2 .1582 .NR7Y
LS LG4y .069 .054 . 109s L0587
TABLE 3.3
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A Comparison of Maximum Likelibood and Least Squares
Using the Weibull Model on Data

from a Weibull (2,6) with 100 v % Contamination

TT El (l.ocal Errors)
P hz

v b .05 .5 .95
.00 ML .022 067 .025 .083 .043
LS .024 070 .032 .092 .046
.08 1 ML .102 .063 .262 .262 .135
LS .023 .073 .057 .104 .056
.08 .5 2 ML .085 .062 .231 .233 .120
LS .023 L0713 .057 L1104 .056
.08 4 ML .086 .059 .225 .229 .118
LS .023 .073 . 055 .103 .095

TABLE 3.4




4.0 An Example of Fitting a Weibull Model to Visibility Data Using Maximum

Likelihood and Least Squares Techniques

fit for visibility data at 10 a.m. in February at Mildenhall,

Table

4.

England.

1 gives the empirical cdf, the Weibull/LSE fit, and the Weibull ™"

We

were concerned with the estimation of P(X<x) where x is any positive real

number, and X is visibility in miles. The data was the result of approximately

ten years of observations. The object was to produce a =imple formula from

which the probability of visibility events

could be quickly evaluated.

Such

a formula would "compact" the data, and be useful for simulation models.

for various times of day and year.

give very similar results.

The Weibull model had previously been

the results from the LSE.

used for a number of other location-
For the data in the table, the MLE and LSE

Because of its robust properties, we have preferred

+ ; - " - -
¥ MILES o lu fszely ls/s {34 | LN B TP 2 |3 | 4 0
OBSERVED | i
FREQUENCY | .000[.031{.0341.047.065].0811.113].152).180.247 {.343 |.392}.453|.557 1.6}
i
LSE FIT .0001.027.035}.0591.075].0911.124].156].188 |.251 {.310 [.366]|.467 555 .6
MLE FIT .000{.0271.035|.059{.074.090].123(.154 |.186 }.247 |.305 {359}.459 545‘ 6l
TABLE 4.1: The Empirical C.D.F., Weibull/LSE Fit, and the Weibull/MLE Fit for

Visibility at Mildenhall, England,

February, 10 a.m.

i
)
'
—
|
!
|
i
]



-15-

5.0 Summary and Conclusions

The method of maximum likelihood and a least squares technique have
been compared under a variety of different sjtuations when the purpose of
the estimation was to estimate the c¢df. When the probabilistic model used
was correct or nearly correct the two methods produced very similar results
with the MLE usually slightly better. However, when the model used was wrong
or the data was contaminated, the least squares technique often gave
substantially better results.

Thus, it appears that the LSE are most useful when the underlying
probability distribution is not clearly established or when the sample
information has possible outliers. In these situations the LS model exhibits
a great deal mo;e stability or robustness than the ML model.

The maximum likelihood method is frequently the only method used for
parameter estimation. Our results are in agreement with the statements of
Berkson (1980) and LeCam (1980) which point out that maximum likelihood
procedures should not be used exclusively without regard to the purposes for

which the estimates are required.
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